Cortex® M4F:次世代のリアルタイム処理を実現するi.MX8QM SMARCシステム・オン・モジュール


iWave systems recently launched a new SMARC System on Module (SOM) based on the powerful NXP® i.MX 8QuadMax applications processors. This high-performance SOM features an intelligent blend of MPUs+MCU power in a single device and integrates heterogeneous multicore 64-bit ARM® processors (Dual Cortex® A72@ 1.8 GHz + Quad Cortex® A53 @ 1.2 GHz and Dual Cortex® -M4F @ 266 MHz), targeted for applications that demand advanced real-time processing, multi-media performance as well as in applications that requires simultaneous multi-OS operations. For more details refer to the link: i.MX8 QuadMax NXP SMARC SOM 

i.MX8QM SMARC SOM

The Cortex® M4F microcontroller plays an integral part in realizing various real-time operations of the SOM module. It is a powerful energy-efficient microcontroller core with floating-point arithmetic functionality that offers a low-latency execution environment with real-time and low-power processing capability and runs bare-metal code or a real-time operating system like FreeRTOS.

The Cortex® ‑M4F microcontroller incorporates the following key features:

  • A processor core.
  • A Nested Vectored Interrupt Controller for low-latency interrupt processing.
  • Multiple high-performance bus interfaces.
  • Memory Protection Unit (MPU) & Floating Point Unit (FPU).
  • LPIT (Low-power Periodic Interrupt Timer) for periodic timer services
  • TPM (Timer PWM Module) for timer and PWM services
  • RGPIO (Rapid General-Purpose Input/Output) for the fast pin I/O capability
  • MU (Messaging Unit) for interprocessor communication
  • INT MUX (Interrupt Mux) to select local interrupts routed outside of the subsystem
  • SEMA42 (hardware semaphore) for HMP synchronization to shared resources
  • LPI2C (Low-Power I2C) for serial communication
  • LPUART (Low-Power UART) for serial communication and debug

 

Optimized performance and efficiency for real-time processing:

To optimize performance and increase system efficiency it is always effective to separate computation tasks between various Cortex®   cores. The Cortex® A cores run the high-level OS (Linux /Android) and can be used to drive applications that demand compute-intensive graphics (2D/3D), 4K video, high-speed data processing, etc., while real-time applications such as sensor monitoring, data acquisition, motor control, etc., requires a high degree of determinism and DSP capability which can be handled very efficiently by the RTOS running on the Cortex® M4F cores. In addition, the SOM supports simultaneous operation of multiple OS platforms that enables the cores to drive totally independent applications, for e.g. When the Cortex® A cores handle a system for HMI or an instrument cluster, the Cortex® M4F can drive the circuitry for sensor control while utilizing RPC for interprocessor communications.

High-speed data acquisition:

On applications that make use of high-speed RF synthesis (ADC conversion), the Cortex® -M4F core can be employed to acquire analog inputs at a high sample rate and offload the Cortex®  A cores for instantaneous processing of the acquired data. For instance, in the case of industrial automation, where devices are often deployed in remote locations, the Cortex® -M4F core continuously monitors sensor operations and can instantly detect any signal variations which are then communicated with Cortex® A cores for instantaneous processing.

Intelligent power management:

In applications where the Cortex® A cores wait for communication from the Cortex® M4F cores, the system can take control of the situation and power gate the Cortex® A cores. The Cortex® A cores can go to sleep mode and can be activated either using predefined wake-up time or when there is a user-defined interrupt generated by Cortex® M4F core. While the Cortex® A core is shut down, the Cortex® M4F continues to monitor the system in low power, thereby optimizing the power intakes.

Rear-view camera application using the Cortex® M4F of i.MX8QM SMARC SOM

iWave Systems have validated the real-time performance of i.MX8QM SOM by demonstrating an application for the rear-view camera using only the Cortex® M4F of the SOM. The application demonstrates the fast boot capability of the Cortex® M4F  which is interfaced with the camera sensors mounted at the rear of the vehicle. After powering on the board in just 3 secs the camera application starts to run. Cortex® M4F acquires data from the camera sensors and displays the image/video on the rear-view mirror thereby aiding the users to reverse park their vehicles with ease.

Likewise, several industrial applications ranging from Automation, Drones, HMI, and High-End signage, both real-time and non-real-time can be easily enabled using iWave’s powerful i.MX8QM  SMARC SOM platform.

With 10+ years of longevity, custom SOM configuration, and dedicated technical support including carrier board review, software support, etc., designers and OEMs can be assured of iWave’s unwavering quality and long-term service. Our support resources include detailed hardware and software user manual, carrier board schematics, BSP package with toolchain support, reference designs, etc.,

詳細およびお問い合わせは、mktg@iwavesystems.comまで書面にてご連絡いただくか、地域パートナーまでご連絡ください。

著作権 © 2022 iWave Systems Technologies Pvt.